

# Structural Engineering Overview

Edgar Castro 2011



#### ENGINEERING HUMAN SPACEFLIGHT







# **ES** Organization













Provide technical expertise and leadership for the development, evaluation, and operation of structural, mechanical, and thermal spaceflight systems

- Development of International Docking Standards, advanced analytical tools & methods, material, manufacturing & NDE processes
- Operation of structural, materials, dynamic, manufacturing, and thermal facilities
- SSP, ISS, CEV Program system managers, subsystem managers, NSEs



# Structural and Mechanical Systems













# **Passive Thermal Systems**

#### **Thermal Analysis**

- AESOP/STAB
- Thermal Desktop
- SINDA/FLUINT



#### Thermal Design

- Thermal Protection System
- Passive Thermal Control
- Pro-E Capability





#### System/Subsystem Expertise

- Orbiter Thermal Protection
- Orbiter Leading Edge
- Orbiter Thermal Control
- ISS Passive Thermal Control
- Orion Passive Thermal Control
- Orion Thermal Protection

#### **Thermal Testing**

- Atmospheric Reentry
   Materials and Structures
   Evaluation Facility (ARMSEF)
   a.k.a. "Arc Jet" Bldg. 222
- Radiant Heat Test Facility (RHTF) - Bldg. 260

The Thermal Design Branch provides expertise in thermal design, analysis, testing, and system management to the Space Shuttle, International Space Station, Orion Spacecraft, and other miscellaneous projects.

#### ENGINEERING HUMAN SPACEFLIGHT



#### Materials and Manufacturing



Failure Analysis



**NDE and Fracture Control** 



Advanced Materials and Manufacturing



Material Control



Space Environments and Contamination





## **Loads and Dynamics**

Analysis
Aero-acoustics
Transient dynamics
Modal
Non-linear contact dynamics

#### Testing

Random Vibration testing Modal Testing Vibro acoustic Testing Human Rated Vibration Test Bed





# Composite Structure Opportunity

#### **New Cabin**

- 1. Ready in 2012
- 2. Common goals

#### **Opportunities**

- 1. New Materials
- 2. Manufacturing
- 3. Design Teams
- 4. Testing
- 5. Test results
- 6. Analysis methods
- 7. Instrumentation









#### ENGINEERING HUMAN SPACEFLIGHT



# **Demonstrations Technology**

#### Inflatable Structure Opportunity **Technology** Invention



Large scale pressurized volumes utilizing advanced material and manufacturing techniques capable of withstanding 4 times operating pressure

#### Feasibility Demonstration



Full scale habitation module architecture and testing of integrated systems during deployment and operations

#### Commercial **Demonstration**



Demonstration of inflatable technology utilizing a commercial sub-scale module

#### Continued **Advancements**



Integration of hatch/docking ports and next generation construction methods

#### Flagship Demonstrations



Self sustaining habitation module suitable for missions beyond LEO

#### **Technology Demonstration**

1996

2000

2005

#### **Inflatable Habitat Development History**

**Enabling Technolog**y **Development** 













Commercial Development



NATIONAL AERONAUTICS AND SPACE ADMINISTRATION





## Atmospheric Entry capsule Opportunity

Remains internal (IVA) on the ISS







Exits via the JEM airlock



Navigates away from the ISS

Re-entry Technologies

HTV, ATV, Progress, or COTS



Targeted Landing





#### In Conclusion...

- Structural Engineering domain is very broad in capabilities, tools, and technologies
- Here today to learn and understand common goals, challenges, and opportunities
- Everything begins with a first step take action
  - Overcome export control challenges in a collaborative international environment
  - Advance the discipline
  - Advance international collaborations in human spaceflight